
Caching and Demand-Paged 
Virtual Memory



Definitions
• Cache

– Copy of data that is faster to access than the original
– Hit: if cache has copy
– Miss: if cache does not have copy

• Cache block
– Unit of cache storage (multiple memory locations)

• Temporal locality
– Programs tend to reference the same memory locations 

multiple times
– Example: instructions in a loop

• Spatial locality
– Programs tend to reference nearby locations
– Example: data in a loop



Cache Concept (Read)



Cache Concept (Write)

Write through: changes sent
immediately to next level of 
storage

Write back: changes stored 
in cache until cache block is 
replaced



Memory Hierarchy

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core



Main Points

• Can we provide the illusion of near infinite 
memory in limited physical memory?
– Demand-paged virtual memory
– Memory-mapped files

• How do we choose which page to replace?
– FIFO, MIN, LRU, LFU, Clock

• What types of workloads does caching work 
for, and how well?
– Spatial/temporal locality vs. Zipf workloads



Hardware address translation
is a power tool

• Kernel trap on read/write to selected addresses
– Copy on write
– Fill on reference
– Zero on use
– Demand paged virtual memory
– Memory mapped files
– Modified bit emulation
– Use bit emulation



Demand Paging (Before)



Demand Paging (After)



Demand Paging on MIPS

1. TLB miss
2. Trap to kernel
3. Page table walk
4. Find page is invalid
5. Convert virtual address 

to file + offset
6. Allocate page frame
– Evict page if needed

7. Initiate disk block read 
into page frame

8. Disk interrupt when 
DMA complete

9. Mark page as valid
10. Load TLB entry
11. Resume process at 

faulting instruction
12. Execute instruction



Demand Paging
1. TLB miss
2. Page table walk
3. Page fault (page invalid 

in page table)
4. Trap to kernel
5. Convert virtual address 

to file + offset
6. Allocate page frame
– Evict page if needed

7. Initiate disk block read 
into page frame

8. Disk interrupt when 
DMA complete

9. Mark page as valid
10. Resume process at 

faulting instruction
11. TLB miss
12. Page table walk to fetch 

translation
13. Execute instruction



Allocating a Page Frame

• Select old page to evict
• Find all page table entries that refer to old page
– If page frame is shared

• Set each page table entry to invalid
• Remove any TLB entries
– Copies of now invalid page table entry

• Write changes on page back to disk, if 
necessary



How do we know if page has been 
modified?

• Every page table entry has some bookkeeping 
– Has page been modified?
• Set by hardware on store instruction
• In both TLB and page table entry

– Has page been recently used?
• Set by hardware on in page table entry on every TLB miss

• Bookkeeping bits can be reset by the OS kernel
– When changes to page are flushed to disk
– To track whether page is recently used



Keeping Track of Page Modifications
(Before)



Keeping Track of Page Modifications
(After)



Virtual or Physical Dirty/Use Bits
• Most machines keep dirty/use bits in the page 

table entry
• Physical page is
– Modified if any page table entry that points to it is 

modified
– Recently used if any page table entry that points to it 

is recently used
• On MIPS, simpler to keep dirty/use bits in the 

core map
– Core map: map of physical page frames



Emulating Modified/Use Bits w/
MIPS Software Loaded TLB

• MIPS TLB entries have an extra bit: modified/unmodified
– Trap to kernel if no entry in TLB, or if write to an unmodified page

• On a TLB read miss:
– If page is clean, load TLB entry as read-only; if dirty, load as rd/wr
– Mark page as recently used

• On a TLB write to an unmodified page:
– Kernel marks page as modified in its page table
– Reset TLB entry to be read-write
– Mark page as recently used

• On TLB write miss:
– Kernel marks page as modified in its page table
– Load TLB entry as read-write
– Mark page as recently used



Emulating a Modified Bit

(Hardware Loaded TLB)
• Some processor architectures do not keep a 

modified bit per page
– Extra bookkeeping and complexity

• Kernel can emulate a modified bit:
– Set all clean pages as read-only

– On first write to page, trap into kernel

– Kernel sets modified bit, marks page as read-write

– Resume execution

• Kernel needs to keep track of both
– Current page table permission (e.g., read-only)

– True page table permission (e.g., writeable, clean)



Emulating a Recently Used Bit
(Hardware Loaded TLB)

• Some processor architectures do not keep a 
recently used bit per page
– Extra bookkeeping and complexity

• Kernel can emulate a recently used bit:
– Set all recently unused pages as invalid
– On first read/write, trap into kernel
– Kernel sets recently used bit
– Marks page as read or read/write

• Kernel needs to keep track of both
– Current page table permission (e.g., invalid)
– True page table permission (e.g., read-only, writeable)



Models for Application File I/O
• Explicit read/write system calls
– Data copied to user process using system call
– Application operates on data
– Data copied back to kernel using system call

• Memory-mapped files
– Open file as a memory segment
– Program uses load/store instructions on segment 

memory, implicitly operating on the file
– Page fault if portion of file is not yet in memory
– Kernel brings missing blocks into memory, restarts 

process



Advantages to Memory-mapped Files

• Programming simplicity, esp for large files
– Operate directly on file, instead of copy in/copy out

• Zero-copy I/O
– Data brought from disk directly into page frame

• Pipelining
– Process can start working before all the pages are 

populated
• Interprocess communication
– Shared memory segment vs. temporary file



From Memory-Mapped Files to 
Demand-Paged Virtual Memory

• Every process segment backed by a file on disk
– Code segment -> code portion of executable
– Data, heap, stack segments -> temp files
– Shared libraries -> code file and temp data file
– Memory-mapped files -> memory-mapped files
– When process ends, delete temp files

• Unified memory management across file 
buffer and process memory



Cache Replacement Policy

• On a cache miss, how do we choose which 
entry to replace?
– Assuming the new entry is more likely to be used 

in the near future
– In direct mapped caches, not an issue!

• Policy goal: reduce cache misses
– Improve expected case performance
– Also: reduce likelihood of very poor performance



A Simple Policy

• Random?
– Replace a random entry

• FIFO?
– Replace the entry that has been in the cache the 

longest time
– What could go wrong?



FIFO in Action

Worst case for FIFO is if program strides through 
memory that is larger than the cache



MIN, LRU, LFU
• MIN
– Replace the cache entry that will not be used for the 

longest time into the future
– Optimality proof based on exchange: if evict an entry 

used sooner, that will trigger an earlier cache miss
• Least Recently Used (LRU)
– Replace the cache entry that has not been used for 

the longest time in the past
– Approximation of MIN

• Least Frequently Used (LFU)
– Replace the cache entry used the least often (in the 

recent past)



LRU/MIN for Sequential Scan





Belady’s Anomaly



Clock Algorithm: Estimating LRU

• Periodically, 
sweep through all 
pages

• If page is unused, 
reclaim

• If page is used, 
mark as unused



Nth Chance: Not Recently Used
• Instead of one bit per page, keep an integer
– notInUseSince: number of sweeps since last use

• Periodically sweep through all page frames
if (page is used) {

notInUseSince = 0;
} else if (notInUseSince < N) {

notInUseSince++;
} else {

reclaim page;
}



Implementation Note
• Clock and Nth Chance can run synchronously
– In page fault handler, run algorithm to find next page to 

evict
– Might require writing changes back to disk first

• Or asynchronously
– Create a thread to maintain a pool of recently unused, 

clean pages
– Find recently unused dirty pages, write mods back to disk
– Find recently unused clean pages, mark as invalid and 

move to pool
– On page fault, check if requested page is in pool!
– If not, evict that page



Recap

• MIN is optimal
– replace the page or cache entry that will be used 

farthest into the future
• LRU is an approximation of MIN
– For programs that exhibit spatial and temporal 

locality
• Clock/Nth Chance is an approximation of LRU
– Bin pages into sets of “not recently used”



Working Set Model

• Working Set: set of memory locations that 
need to be cached for reasonable cache hit 
rate

• Thrashing: when system has too small a 
cache



Cache Working Set



Phase Change Behavior



Question

• What happens to system performance as we 
increase the number of processes?
– If the sum of the working sets > physical memory?



Zipf Distribution

• Caching behavior of many systems are not 
well characterized by the working set model

• An alternative is the Zipf distribution
– Popularity ~ 1/k^c, for kth most popular item,        

1 < c < 2



Zipf Distribution



Zipf Examples

• Web pages
• Movies
• Library books
• Words in text
• Salaries
• City population
• …
Common thread: popularity is self-reinforcing



Zipf and Caching



Cache Lookup: Fully Associative



Cache Lookup: Direct Mapped



Cache Lookup: Set Associative



Page Coloring

• What happens when cache size >> page size?
– Direct mapped or set associative
– Multiple pages map to the same cache line

• OS page assignment matters! 
– Example: 8MB cache, 4KB pages
– 1 of every 2K pages lands in same place in cache

• What should the OS do?



Page Coloring


